Compact Spacelike Hypersurfaces with Constant Mean Curvature in the Antide Sitter Space

نویسندگان

  • Henrique F. de Lima
  • Joseilson R. de Lima
چکیده

Recommended by Christian Corda We obtain a height estimate concerning to a compact spacelike hypersurface Σ n immersed with constant mean curvature H in the anti-de Sitter space H n1 1 , when its boundary ∂Σ is contained into an umbilical spacelike hypersurface of this spacetime which is isometric to the hyperbolic space H n. Our estimate depends only on the value of H and on the geometry of ∂Σ. As applications of our estimate, we obtain a characterization of hyperbolic domains of H n1 1 and nonexistence results in connection with such types of hypersurfaces.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

‎Spacelike hypersurfaces with constant $S$ or $K$ in de Sitter‎ ‎space or anti-de Sitter space

‎Let $M^n$ be an $n(ngeq 3)$-dimensional complete connected and‎ ‎oriented spacelike hypersurface in a de Sitter space or an anti-de‎ ‎Sitter space‎, ‎$S$ and $K$ be the squared norm of the second‎ ‎fundamental form and Gauss-Kronecker curvature of $M^n$‎. ‎If $S$ or‎ ‎$K$ is constant‎, ‎nonzero and $M^n$ has two distinct principal‎ ‎curvatures one of which is simple‎, ‎we obtain some‎ ‎charact...

متن کامل

$L_k$-biharmonic spacelike hypersurfaces in Minkowski $4$-space $mathbb{E}_1^4$

Biharmonic surfaces in Euclidean space $mathbb{E}^3$ are firstly studied from a differential geometric point of view by Bang-Yen Chen, who showed that the only biharmonic surfaces are minimal ones. A surface $x : M^2rightarrowmathbb{E}^{3}$ is called biharmonic if $Delta^2x=0$, where $Delta$ is the Laplace operator of $M^2$. We study the $L_k$-biharmonic spacelike hypersurfaces in the $4$-dimen...

متن کامل

Spacelike hypersurfaces in de Sitter space

In this paper, we study the close spacelike hypersurfaces in de Sitter space. Using Bonnet-Myer’s theorem, we prove a rigidity theorem for spacelike hypersurfaces without the constancy condition on the mean curvature or the scalar curvature. M.S.C. 2010: 53C40, 53B30.

متن کامل

Spacelike hypersurfaces in Riemannian or Lorentzian space forms satisfying L_k(x)=Ax+b

We study connected orientable spacelike hypersurfaces $x:M^{n}rightarrowM_q^{n+1}(c)$, isometrically immersed into the Riemannian or Lorentzian space form of curvature $c=-1,0,1$, and index $q=0,1$, satisfying the condition $~L_kx=Ax+b$,~ where $L_k$ is the $textit{linearized operator}$ of the $(k+1)$-th mean curvature $H_{k+1}$ of the hypersurface for a fixed integer $0leq k

متن کامل

Spacelike hypersurfaces in de Sitter space with constant higher-order mean curvature

ing from (2.6), we obtain that ∫ M ( H1Hr −Hr+1 〈N ,a〉dV = 0. (3.1) We know from Newton inequality [2] that Hr−1Hr+1 ≤ H2 r , where the equality implies that k1 = ··· = kn. Hence Hr−1 ( H1Hr −Hr+1 ≥Hr ( H1Hr−1−Hr ) . (3.2) It derives from Lemma 2.1 that 0≤H1/r r ≤H1/r−1 r−1 ≤ ··· ≤H1/2 2 ≤H1. (3.3) Thus we conclude that Hr−1 ( H1Hr −Hr+1 ≥Hr ( H1Hr1 −Hr ≥ 0, (3.4) and if r ≥ 2, the equalities h...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Int. J. Math. Mathematical Sciences

دوره 2009  شماره 

صفحات  -

تاریخ انتشار 2009